On groups that have normal forms computable in logspace

نویسندگان

  • Murray Elder
  • Gillian Z. Elston
  • Gretchen Ostheimer
چکیده

Article history: Received 20 January 2012 Available online 26 February 2013 Communicated by Derek Holt

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Groups That Have Normal Forms Computable in Logspace Murray Elder, Gillian Elston, and Gretchen Ostheimer

We consider the class of finitely generated groups which have a normal form computable in logspace. We prove that the class of such groups is closed under passing to finite index subgroups, direct products, wreath products, and certain free products and infinite extensions, and includes the solvable Baumslag-Solitar groups, as well as non-residually finite (and hence nonlinear) examples. We def...

متن کامل

Logspace computations for Garside groups of spindle type

M. Picantin introduced the notion of Garside groups of spindle type, generalizing the 3-strand braid group. We show that, for linear Garside groups of spindle type, a normal form and a solution to the conjugacy problem are logspace computable. For linear Garside groups of spindle type with homogenous presentation we compute a geodesic normal form in logspace.

متن کامل

Logspace Computations in Graph Groups and Coxeter Groups

Computing normal forms in groups (or monoids) is in general harder than solving the word problem (equality testing). However, normal form computation has a much wider range of applications. It is therefore interesting to investigate the complexity of computing normal forms for important classes of groups. We show that shortlex normal forms in graph groups and in right-angled Coxeter groups can ...

متن کامل

Logspace computations in Coxeter groups and graph groups

Computing normal forms in groups (or monoids) is computationally harder than solving the word problem (equality testing), in general. However, normal form computation has a much wider range of applications. It is therefore interesting to investigate the complexity of computing normal forms for important classes of groups. For Coxeter groups we show that the following algorithmic tasks can be so...

متن کامل

Space complexity of Abelian groups

We develop a theory of LOGSPACE structures and apply it to construct a number of examples of Abelian Groups which have LOGSPACE presentations. We show that all computable torsion Abelian groups have LOGSPACE presentations and we show that the groups Z, Z(p∞), and the additive group of the rationals have LOGSPACE presentations over a standard universe such as the tally representation and the bin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1201.4363  شماره 

صفحات  -

تاریخ انتشار 2012